
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 19 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Journal of Polymeric Materials
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713647664

Differential Phenomenological Equations of Mass Transfer of Molecular
Solutions Through the Membrane
Yu. G. Medvedevskikha; A. A. Turovskiya; G. E. Zaikovb

a Pisarzhevskii Institute of Physical Chemistry, Lvov Department, Ukrainian Academy of Science,
L'vov, Ukraine b Semenov Institute of Chemical Physics, Russian Academy of Science, Moscow, Russia

To cite this Article Medvedevskikh, Yu. G. , Turovskiy, A. A. and Zaikov, G. E.(1998) 'Differential Phenomenological
Equations of Mass Transfer of Molecular Solutions Through the Membrane', International Journal of Polymeric
Materials, 41: 1, 113 — 121
To link to this Article: DOI: 10.1080/00914039808034859
URL: http://dx.doi.org/10.1080/00914039808034859

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713647664
http://dx.doi.org/10.1080/00914039808034859
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Intern. J .  Polymeric Mater., 1998, Vol. 41, pp. 113-121 
Reprints available directly from the publisher 
Photocopying permitted by license only 

0 1998 OPA (Overseas Publishers Association) N.V. 
Published by license under 

the Gordon and Breach Science 
Publishers imprint. 

Printed in India. 

Differential Phenomenological 
Equations of MassTransfer 
of Molecular SolutionsThrough 
the Membrane 

Yu. G. MEDVEDEVSKIKHa, A. A.TUROVSKIYaand G. E. ZAIKOVb3* 

aPisarzhevskii Institute of Physical Chemistry, L'vov Department, 
Ukrainian Academy of Science, UI. Nauchnaya 3a, L'vov, 290047 Ukraine; 
bSemenov Institute of Chemical Physics, Russian Academy 
of Science, UI. Kosygina 4, Moscow, 117977 Russia 

(Received 8 July 1997) 

Differential phenomenological equations of mass transfer of molecular solutions for 
baromembrane process are developed and discussed. 
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INTRODUCTION 

The main models of the baromembrane process assume the equation 
of flow, based on the Phenomenological irreverse processes and 
Gibbs-Dugem equation, which postulates that the driving force of all 
possible mechanisms of transfer of the components of solution 
through the membrane is the gradient of the chemical potential. The 
equation correlating the flows of the components is found and the 
effect of partial osmotic pressures on the correlation mechanism is 
discussed. The criterion of the indivisibility of the components in the 
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114 Yu G. MEDVEDEVSKIKH et a1 

baromembrane processes is established and i t  is shown that in a 
stationary system the decrease of the pressure on the membrane is a 
linear function of the transfer coordinate. 

THEORY 

In the base of the Phenomenological description of the baromembrane 
process lies the equation of the flow, which is determinative. 
Therefore, we readily note the discrepancies between the three most 
common models of the baromembrane process. 

In the diffusion model [l ,  21 the initial equation of the flow J, of the 
components may be shown as: 

J ,  = - ( D , / R T ) c , V p ,  (1) 

where D, - coefficient of the diffusion, p r  = chemical potential, c, - 
molar-volume concentration of the i component in one-dimensional 
approach the operator V = alax, where x - the coordinate of the 
transfer on the perpendicular to the surface of the membrane. 

In the frictional model [3 - 51 the initial equations are presented 
through the rate u of the transfer ofthe components (for binary system): 

f ; j ( ~  - uj) +J;ui = - v ~ i ,  i = 1,2 (2) 

Here: fi - frictional coefficient between the moving component and 
unmovable membrane; fb - frictional coefficient between the moving 
with different velocities i- and j-components according to the principle 
of the microscopic reversibility J;, =dl at i#j. 

In the last version of the model [6],  which is found on the 
phenomenology of the thermodynamics of the irrevcrsible processes, 
the flows for binary system are determined by the equation: 

Jl  = -Lllvpl - LYvpJ (3) 

in which L,  - the coefficients of transfer which connected by 
relationship of the reciprocity of Onzager: L, = L,, at i # j .  

All of the present models assume as the driving force of the baro- 
membrane process the gradient of the chemical potential, but the first 
two are determined by the flow rate u, of the transfer, because, J ,  = u,c,, 
while the third one depends directly on the flows J,. The last 
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TRANSFER OF MOLECULAR SOLUTIONS 115 

determination leads to two contradictory results. Let’s simplify (3) and 
neglect the cross compounds of the flows and accepting LG= LG= 0 at 
i f j .  Expressing the chemical potential p j  as the function of the 
pressure P and the activity ai of the component at T= const. we have. 

Ji = -LiVpi = -Li(v;VP + RT lna;), (4) 

where vi - partial-molar volume. At VP=O from the Eq. (4) in 
combination with the equation 

d ~ i / a t  = - V ( C ~ U ~ )  = -VJi ( 5 )  

it follows dcj/dt = LiRT d2 In ailax ’. Even at simplifying substitution 
of a to c this relationship is not Fick’s equation. 

At the absence of the division of components all the Vlnai=O. 
From (4) follows, that in this case the flow Ji=-Livi VP is not 
dependent from the concentration of the component, although must 
be directly proportional to it. 

In the Eqs. (1) and (2) of the dissolution-diffusion and friction 
models the indicated contradictions are absent, 

The next problem is the account of the interaction of the flows. 
According to 161 the Eq. (1) of the dissolution-diffusion model assume 
the independent mechanism of diffusion of the components through 
the membrane and do not account for the interaction of the flows. 

On the contrary Eqs. (2) and (3) of the models of friction and the 
thermodynamic irreversible processes introduce the interaction of the 
flows with means of the cross constituents likeJ,(ui- uj) and LVVmi. 
However as chemical potentials of the components of the solution are 
connected with Gibbs-Dugem equation 

i 1 

the flows of components, appear to be bonded to each other (this bond 
will be shown below), even if they are determined by the Eq. (1). To 
determine whether additional bonds are necessary here, let us examine 
the cross constituents of the friction by putting in (2)J;:=O. Note that 
in (2) the remaining members f12(u1-u2), f21(u-u) must describe the 
mutual diffusion of the components without the membrane. As it is 
seen, the given system of the equations at condition fIz  =f21 requires 
the equity V p ,  = -Vp2,  that contradicts the Gibbs-Dugem equation. 
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The analysis allows to accept as a determinative equation of the 
flow the expression ( T =  const.) 

Ji = -(L;/RT)C;V/li ,  (7) 

in which the coefficient of the transfer L, has the dimension of 
the diffusion coefficient. However, in L, may be included not only 
the molecular-diffusion mechanism of the transfer, but also other 
possibilities, for example the mechanisms of the capillary and 
viscosity. The driving force all of the mechanisms of the transfer is 
the gradient of the chemical potential. Therefore the Eq. (7) should be 
considered as the Phenomenological equation of thermodynamics of 
the irreversible processes, in which the physical sense and numeral 
meaning L, is determined by the participation and the partial con- 
tribution of all possible mechanisms of the transfer of the components 
through the membrane. 

In the isothermal system at the absence of other acting external 
parameters except the pressure, the Eq. (7) gets the appearance: 

At the analysis of (8) and particularly at its integration another 
problem arises. Is it necessary to consider the membrane material or 
membrane itself as the component of the system and how to connect 
the factors c,, v;, ai in the membrane with the same factors in the 
solution outside the membrane. In accordance with the initial Eqs. (7) 
and (8) let us inspect two aspects of the problem. 

Firstly, if the membrane is considered as the component of the 
system we may write the equation of the flow Jm, similar to (8): 

J,,, = L,r,(vmVP + R T  Vln am)/RT, (9) 

Obviously, J,, = 0, but to assume that in this case L, = 0 is physically 
not justified. Indeed, J,,, = 0 because V P  = 0; membrane leaning on the 
inset is at the same to the pressure of the which is equal pressure of 
initial solution. Hence it appears that Vln a,,, = 0. 

Secondly, initial equation of the mass transfer (7) obviously 
supposes the absence of the chemical polarization, which is connec- 
ted with braking of the processes by the stage of passage of the 
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components through the interface boundaries. So on the interface 
boundaries the chemical equilibrium is supposed the necessary 
condition of which and its conservation at variation of the parameters 
of the system is not only equity of the chemical potentials in the 
solution (pi)  and in the membrane (pi,), but also their increments: 
pj = pi,, V p i =  Vpjm. This allows in the initial Eq. (7) to consider V p i  
as the gradient of chemical potential, which is continued into the 
membrane, and is occupying its free volume. Last circumstance is 
substantial, because in the kinetic Eq. (7), if there is no special reason 
amount ci is determined in relation to all volume of the system, that is 
membrane. 

Denoting it through cim we have cim=nim/V, where nim - number of 
moles of the component in the whole volume of the membrane. 
Introducing the porosity and free volume Vo of the membrane relation 
s = Vo/ V, we obtain cim = nim s/ VO. Because nim/ Vo = ci is molar-volume 
concentration of the component in the free volume of membrane. Thus 
cim = cis and therefore, if in (7) under ci is understood cim = nim/ V, then 
Lj = Li, is the real coefficient of transfer, which characterizes the entire 
membrane as the system. But it is possible to understand under ci the 
ci,=ni,/Vo. Then Li=Lims is a coefficient of transfer, which is 
induced to free volume of membrane. Thus the membrane is present in 
the kinetic equation only as a factor determining the coefficient of 
transfer Li through the real Lim and porosity s: 

The effects of interaction of the membrane material and the 
components of solution are reflected only through Lj,, while the 
membrane porosity, introduced by the relation s = Vo/V, may not 
coincide with the porosity, determined experimentally by the known 
standard methods, althrough it should be close to it. 

Hence, the two described aspect allow as correctly, as the primary 
kinetic equation is correct (7) to exclude the membrane as the 
component of the system, implying ci, vi and ai as variable of the 
solution, extended into the membrane and occupying its free space. 

Finally we shall note, that the solution of the proposed problem 
through the law of distribution of components between the membrane 
and the solution as K j  = aim/ai in this case is seeming. Really, taking the 
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Gibbs-Duhem equation for two dissolved components and the 
membrane material 

qnrd  In a ( ,  + cb,d In azm + cmd In am = 0, 

we have for the membrane material dln aZm = 0, and for dissolved 
components d l n a l m = d  Inat .  because J lna2m=dlnu2.  We can then 
express the distribution law as 

(1  1) 

KI = r i m N i m / r i N i  = YimCim(C1 + c 2 ) / y z c i ( c 1 m  + ~ 2 m  + e m )  

where y and N - corresponding coefficients of activity and mole parts. 
By inserting Cjm = K;yici (elm + ~2~ + cm)/yi (el + c2) we obtain as alter- 
native of (1 1) 

KI (yllytm)cldlnal + K 2 ( ~ 2 / ~ 2 r n ) ~ d  lna2 = 0 (12) 

Comparing ( 1  2) with the Gibbs-Duhem equation for double 
solution, we get the equation K ~ ( ~ I / Y I ~ )  = K 2 ( 7 2 / ~ 2 ~ ) ,  which does 
not add anything new to the problem under study. 

Let us determine and analyze the main consequences of (8). 

1. If we divide J,  on L, and sum the left and right parts of (8) on 
all the components of the solution taking into account the Gibbs- 
Duhem Eq. (6) and correlations C,c,v,= Cid,= 1, in which 41 = 

c,v, - volume part, we shall get the equation of connection between 
the flows 

C J i / L i  = - V P / R T .  
I  

In particular case V P  = 0 the Eq. (1 3) determines the connection 
between the flows at co-diffusion of the components. For binary 
sotution 

Here we see, that effect of admixtures of the slow component to fast 
component increases with decreasing the transfer coefficient L2 of 
the slow component and higher its concentration, correspondingly 
flow J2 .  Therefore, the fast component flow is changed proportion- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
2
3
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



TRANSFER OF MOLECULAR SOLUTIONS 119 

ally to L1, and slow one to L2, because L1 > Lz. Thus, the increase 
of slow component concentration the volume flow decreases, that is 
the efficiency of baromembrane process decreases. The hermetically 
sealing role of the admixtures, for instance of antifreeze in the 
system of engine cooling, represents not only a physical sealing of 
the pores, but also in abrupt decrease of the quick component flow 
due to relation (14). The mechanism of this relation consists in that 
the separation of the components in the baromembrane process 
creates forces counteracting this separation. Therefore, it is con- 
venient to consider them in terms of the osmotic pressure forces. 

From definition of the osmotic pressure 

follows 

Using (15), we can change the Eq. (8) 

The Eq. (16) differs from that presented in (7) and needs the 
artificial introduction of the reflectance coefficient. According to 
(1 5)  and (1 6), the partial osmotic pressures, appearing at acce- 
lerating the movement of the slow component, prevents their 
separation. 

2. If the c of the component lowering the flow of the fast composition 
of the solution does not change in the baromembrane process, all 
of the Vlnai=O. As by this JilJi=cilcj the condition of the 
indivisibility of the components of the binary solution, according to 
(8) demands the equality 

Livi = const. (17) 

Divisibility of the components in the baromembrane process is 
possible only at condition Livi= L,vj while the fast component is 
that having a higher Livi. This circumstance, that the correlation 
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between L,vl, but not L,, is the factor of separation of the 
components of the binary solution, allows us to explain experi- 
mentally the observed cases, when high-molecular compounds 
appear to be more permeable for the membrane, than the low- 
molecular components. Really, if the molecular mass of the 
compound, and correspondingly its vir increases due to the length 
of the chain, but by this the transfer mechanism of the component 
through the membrane is similar to the movement of the snake, 
crawling into the borrow, than the transfer coefficient of the 
component may stay practically the same or decrease, but in a 
lesser extent, that increases v,. As a result with the growth of the 
molecular mass (length of the chain) factor L,v, increases, 
increasing the mobility of the component in the membrane. For 
the binary solution the condition of indivisibility of components 
(17) demands the equality LlvI =L2vz. By introducing of the third 
component, differing by the mobility factor from the first to second, 
the indivisibility of the later means Vlnal =Vlna2 # 0 and needs 
equalities Ll = L2, v I  = v2. If they are not executed, the introduction 
of the third component makes divisible the components, which are 
indivisible in the binary system according to condition Llvl = L2v2. 

3. In the stationary system &,/at = 0 and VJ, = 0, hence J ,  = const. and 
is an integral of the process. That is why according to (13) in this 
case VP=const. the decrease of pressure on the membrane is the 
linear function of the coordinate of transfer. Hence, 

VP = (Prr - P’)/S,,, = AP/6,,, 

where A P =  Pr’-P’ - difference of pressures to (PI) and after (PI’) 
membrane; 6, - effective thickness of the membrane. 

The relationship (18) is constantly used for the integration of the 
differential equations of transfer for all models [l - 61, but as 
limited-differential approach, but not the conclusion. 

With the account of the equation of the connection between the 
flows (13) may be written in the integral form, which is convenient 
for the experimental check and calculation of the coefficients of 
transfer: 

JJL’ = -AP/RT (19) 
1 
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Here Li = Li/S,,, - effective coefficient of transfer, which is induced to 
the nit of thickness of the working layer of the membrane. 
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